Homogenization for stochastic reaction-diffusion equations with singular perturbation term
نویسندگان
چکیده
منابع مشابه
Macroscopic reduction for stochastic reaction-diffusion equations
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equations with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estima...
متن کاملGeometric singular perturbation theory for stochastic differential equations
We consider slow–fast systems of differential equations, in which both the slow and fast variables are perturbed by additive noise. When the deterministic system admits a uniformly asymptotically stable slow manifold, we show that the sample paths of the stochastic system are concentrated in a neighbourhood of the slow manifold, which we construct explicitly. Depending on the dynamics of the re...
متن کاملSingular-Degenerate Multivalued Stochastic Fast Diffusion Equations
We consider singular-degenerate, multivalued stochastic fast diffusion equations with multiplicative Lipschitz continuous noise. In particular, this includes the stochastic sign fast diffusion equation arising from the BakTang-Wiesenfeld model for self-organized criticality. A well-posedness framework based on stochastic variational inequalities (SVI) is developed, characterizing solutions to t...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملSingular perturbation analysis of a diffusion/reaction system with a fast reaction∗
We consider a singularly perturbed system of second-order differential equations describing steady state of a chemical process that involves three species, two reactions (one of which is fast), and diffusion. Formal asymptotic expansion of the solution is constructed. The theorem on estimation of the remainder is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Continuous Dynamical Systems - B
سال: 2021
ISSN: 1553-524X
DOI: 10.3934/dcdsb.2021137